
 2. Requirements

 Elicitation of requirements
 1. The provided product brief indicated the overall goals and intentions of the finished

 product and contained general descriptions of its desired functionality
 2. Group brainstorming session was held to compare our interpretations of the brief and to

 raise a list of questions to address to the customer
 3. In a group meeting with the customer, answers to the questions and any other customer

 comments were detailed in informal meeting notes.
 4. Recorded info was formalised as a set of user requirements.
 5. User requirements were distilled down into more specific functional and non-functional

 requirements.
 a. Functional requirements detailed concrete, specific functionality and capabilities of

 the product as related to its software implementation.
 b. Non-functional requirements captured the performative characteristics of the

 completed product as a whole which could be perceived by the user or tester.
 6. Resulting functional and non-functional requirements were closely evaluated for possible

 risks to their implementation; these were detailed within the risk register.

 Research into requirement specification and presentation
 ● IEEE requirements engineering document 1 :

 ○ Provided comprehensive information on all aspects of requirement elicitation and
 presentation, although sections 5.1-5.2.8 and 6.1-6.6.3 were most helpful

 ○ Contained robust justification for the need for requirements and their role in the
 overall software lifecycle process

 ○ Informed our choice of specific language, standardised subjects and verbs (user,
 shall, etc.), the choice of imperative tone, and justifications for these

 ○ Ultimately, aimed at larger, more critical projects than ours
 ● ENG1 lecture on requirements engineering:

 ○ Provided an excellent overview of the motivations for requirements engineering
 and a lucid overview of this process

 ○ Introduced the user/functional/non-functional requirements methodology which
 proved an excellent fit for our scope of project (versus lifecycle-based requirement
 methodology in the IEEE document)

 ○ Demonstrated requirements tables as a tool for writing down and detailing
 requirements

 Informed by these resources, we chose a tabular format for implementing for the
 requirements register, allowing us to easily add additional metadata to individual rows as
 extra columns and permitting a quick, comprehensive overview of the entire register. All rows
 were labelled with unique identifiers, permitting cross-referencing between user and
 (non-)functional requirements, as well as with other sections of project documentation, such
 as the risk register and architecture specs.

 1 Systems and software engineering -- Life cycle processes -- Requirements engineering ,
 ISO/IEC/IEEE 29148:2018(E), 2018.

User Requirements

Category ID Description Priority
Game setting UR_PLATFORM The user shall use a standard laptop PC to play the game Shall
Game setting UR_GAME_INIT The user shall begin a new game from an initial state Shall
Game setting UR_SHIP_CONTROL The user shall control a ship sailing across the great Lake of York Shall
Game setting UR_COMPETING_COLLEGES The user shall encounter at least 3 other colleges Shall
Game setting UR_LEARNING_CURVE The user shall play the game without training Shall
Game setting UR_GAME_DURATION The user shall be able to complete the game within a ~5 minute timespan Shall
Game setting UR_GAME_OBSERVABILITY The game shall accomodate onlookers in the PCs surroundings Shall
Encounters UR_FRIENDLY_SHIP_ENCOUNTER The user shall encounter friendly NPC ships Shall
Encounters UR_HOSTILE_SHIP_ENCOUNTER The user shall encounter hostile NPC ships Shall
Encounters UR_FIRE_WEAPONS The user shall be able to fire weapons from the ship Shall
Encounters UR_BULLET_DODGE The user shall be able to maneuver their ship to dodge fired munitions Shall
Encounters UR_FRIENDLY_BUILDING_INTERACT The user shall interact with friendly buildings Shall
Encounters UR_HOSTILE_BUILDING_COMBAT The user shall engage in combat with hostile buildings Shall
Encounters UR_HOSTILE_COLLEGE_CAPTURE The user shall capture other colleges via combat Shall
Earnables UR_EARN_MONEY The user shall earn money Shall
Earnables UR_EARN_POINTS The user shall earn points Shall
Earnables UR_EARN_XP The user shall earn XP May
Progress UR_QUEST_PROGRESS The user shall progress through a series of quests Shall

Progress UR_GAME_WIN
The user shall win the game through achieving an ultimate objective unlocked
by the fulfilment of preceding requirements/quests Shall

Progress UR_GAME_LOSE The user shall lose the game through being defeated in combat Shall
Encounters UR_SHIP_COMBAT The user shall engage in combat with other ships Assessment 2
Encounters UR_OBSTACLE_ENCOUNTER The user shall encounter obstacles while sailing in game Assessment 2
Encounters UR_WEATHER_ENCOUNTER The user shall encounter bad weather while sailing Assessment 2
Earnables UR_SPEND_MONEY The user shall spend the money earned Assessment 2

Functional Requirements

ID Description User requirement Risks Priority
FR_MENU_KB_INPUT The game shall accept keyboard input for menu navigation UR_PLATFORM Shall
FR_VIEWPORT_SCALING The game shall render on a 13"-27" monitor UR_PLATFORM R6 Shall
FR_MIN_FPS The game shall render at a minimum of 30 FPS UR_PLATFORM R7, R3 Shall
FR_CROSS_PLATFORM_WIN The game shall be playable on Windows UR_PLATFORM Shall
FR_CROSS_PLATFORM_MAC The game shall be playable on Mac OS UR_PLATFORM R9, R10 May
FR_CROSS_PLATFORM_GNU_LINUX The game shall be playable on GNU/Linux UR_PLATFORM Shall
FR_GAME_RESET The game shall allow restarting play from an initial configuration UR_GAME_INIT Shall
FR_SHIP_KB_INPUT The game shall accept keyboard input for ship control UR_SHIP_CONTROL Shall
FR_COLLEGE_ENTITY_TRACKING The game shall keep track of ships and buildings for a minimum of 3 distinct factions UR_COMPETING_COLLEGES Shall
FR_FRIENDLY_AI The game shall control the actions of friendly ships UR_FRIENDLY_SHIP_ENCOUNTER Shall
FR_FRIENDLY_INTERACT The game shall allow user interaction with friendly ships UR_FRIENDLY_SHIP_ENCOUNTER Shall
FR_HOSTILE_AI The game shall control the actions of enemy ships UR_HOSTILE_SHIP_ENCOUNTER R1 Shall
FR_PLAYER_FIRE The game shall enable the user to fire ship weapons UR_FIRE_WEAPONS Shall
FR_PLAYER_AMMO The game shall maintain the state of the user's ship armament and ammunition UR_FIRE_WEAPONS Shall
FR_BULLET_TRAVEL The game shall render the travel of a ship's fired munition UR_BULLET_DODGE R2 Shall
FR_MONEY_TRACKING The game shall keep track of a player's money UR_EARN_MONEY Shall
FR_MONEY_UPDATE The game shall give money on success in quests and encounters UR_EARN_MONEY Shall
FR_POINTS_TRACKING The game shall keep track of a player's points UR_EARN_POINTS May
FR_POINTS_UPDATE The game shall give points with time survived and obstacles navigated UR_EARN_POINTS May
FR_XP_TRACKING The game shall keep track of a player's XP UR_EARN_XP May
FR_XP_UPDATE The game shall give XP on successful combat encounters completed UR_EARN_XP May
FR_QUEST_TRACKING The game shall maintain the state of the user's progress through multiple objectives UR_QUEST_PROGRESS Shall
FR_QUEST_RANDOMISE The game shall randomise user's objectives between different playthroughs UR_QUEST_PROGRESS May
FR_QUEST_OBJECTIVE The game shall associate quest objectives with game entities UR_QUEST_PROGRESS Shall
FR_BOSS_UNLOCK_TRACKING The game shall monitor quest progression status prior to unlocking final objective UR_GAME_WIN Shall
FR_BOSS_SPAWN The game shall spawn boss upon final objective ready status UR_GAME_WIN May
FR_GAME_WIN The game shall display game stats upon successful completion of boss encounter UR_GAME_WIN May
FR_PLAYER_DEFEAT The game shall display game stats upon player defeat UR_GAME_LOSE May
FR_SCENARIO_FAIL The game shall display game stats upon game over scenario completion UR_GAME_LOSE

Non-Functional Requirements

ID Description User requirement Fit criteria Risks
NFR_SHIP_COLLISIONS The game shall detect collisions between different ships UR_HOSTILE_SHIP_ENCOUNTER Distance between drawn assets <5px R4
NFR_WORLD_COLLISIONS The game shall detect collisions between ships and world objects UR_COMPETING_COLLEGES Distance between drawn assets <5px
NFR_BULLET_COLLISIONS The game shall detect collisions between game entities and fired munitions UR_BULLET_DODGE Distance between drawn assets <5px
NFR_USER_INPUT_LAG The game shall be responsive to user input UR_SHIP_CONTROL Input lag <200ms
NFR_AI_LAG NPC actions' responsiveness shall approximate that of player actions UR_HOSTILE_SHIP_ENCOUNTER AI response time <200ms R3
NFR_RENDER_SMOOTHNESS The game world shall render smoothly during player movement UR_SHIP_CONTROL Visual render lag <200ms R8

NFR_COLOURBLINDNESS Game map and assets should be distinguishable by a colourblind person UR_PLATFORM
Subjective screenshot test via colourblind
accessibility evaluation app

NFR_EASE_OF_USE The game shall be self-explainable and feature obvious controls UR_LEARNING_CURVE
Tester must be able to pick up and play with
no prior instruction

NFR_GAME_DURATION The game shall finish within ~5 mins in a win or loss for the player UR_GAME_DURATION
Tester must reach the game stats screen
within 4-6 mins

NFR_LARGE_ASSETS
The game assets shall be large enough to observe from several metre's
distance away on a standard laptop PC screen UR_GAME_OBSERVABILITY

Observer standing 2m away should be able to
answer questions about gameplay state

