
Part A

Software Engineering Methods
Our chosen software engineering method was plan-based rather than agile, with a project
“road-map” being created early in the development process as illustrated below. This seemed most
appropriate as we anticipated no requirement adjustments to manage during the first assessment.

We organised frequent team meetings, on average twice a week. These meetings served two key
purposes:

● Providing a platform to discuss and agree upon key development decisions, most often
regarding game design

● Allowing each team member to communicate their progress on their assigned tasks, and for
new tasks to be assigned when necessary

When creating the initial “road-map”, we chose not to pre-emptively assign any tasks to particular
people, instead we assigned tasks throughout the project with a view to utilising each member's skill
set whilst keeping the workload even. Assigning tasks throughout the project was particularly
appropriate for a team without large amounts of software development experience as our
estimations for the time and effort needed for each task weren’t perfect, therefore this system
avoided any particular team member being assigned tasks at the start of the project which transpired
to be an unfair portion of the workload. The frequent team meetings in which we discussed task
progression, however, allowed us to keep each other accountable for our productivity.

Tools Used
Communication and Collaboration

● For our team meetings we used Zoom. This was an intuitive choice as it is a platform that we
all have lots of experience with and therefore avoided an unnecessary learning curve.

● We created a Discord server for general communications throughout the project. This was
crucial in allowing team members to ask clarifying questions without having to wait for the
next meeting, avoiding any unnecessary obstructions to task progression.

● We created a Trello board in order to organise and keep track of our tasks throughout the
project. Alongside the team meetings, this was crucial in keeping us organised by providing a
visual representation of tasks that were completed, in progress and yet to begin.

Website
● We used GitHub pages to develop our website. This meant that our resulting site would be

simple to replicate for any team which chose to take over our game for assessment 2.

Architecture
● Draw.io was used in order to create the abstract architecture diagram, as this relatively easy

to use tool seemed more appropriate for this simpler diagram
● PlantUML in addition to adobe photoshop was used in order to create the concrete

architecture diagram;
o PlantUML was used at first in order to create representations of classes, categories of

classes and the relationships within each category
o Adobe photoshop was later used in order to add the inter-category relationships

Implementation
● We chose to use IntelliJ as our IDE. This was due to both the ease of use offered by the tool,

along with the fact that several team members had previous experience with the tool: it felt
like the ideal choice to avoid unnecessary and time-consuming learning curves.

● We utilised the libGDX game development framework during the implementation of our
game. Similarly, to our choice of IDE, this was largely influenced by the previous experience
of the team. We were also aware that LibGDX was a popular choice amongst other teams
and therefore our use of this framework may make it easier for another team to take over
and expand our code.

Alternatives considered
● We considered using other IDEs such as Eclipse for software implementation, however as

mentioned previously we chose to use IntelliJ due to team members having previous
experience with this IDE

● We also considered game engines other than libGDX in order to enable software
development:

o We considered using Unity, however we were discouraged from this choice by
factors such as Unity’s reputation for largely outdated/incomplete documentation
and the fact that many useful features are behind a paywall.

o We also considered using the Unreal game engine, but quickly decided against this as
it seemed inappropriate for developing what is a relatively small game and would
cause the resulting game to be unnecessarily bloated.

Part B

Team Roles
During our initial team meeting we discussed assigning the following team roles.

● Meeting Chair: Ensuring organised and efficient team meetings that covered all necessary
updates and decisions

● Secretary: Recording team decisions and keeping notes of the content discussed in each
team meeting

● Librarian: Keeping track of documents and other resources, particularly ensuring that
in-progress documents were regularly uploaded to the team shared google drive

● Report Editor: Overseeing document production, in particular ensuring that documentation
progress was largely in line with the initial working plan

During this discussion we decided to combine the roles of librarian and report editor as they seemed
like largely interdependent tasks. We then discussed who would be most appropriate for each role
and agreed on the following assignments:

● Meeting Chair – Stan
● Secretary – Jarred
● Librarian/Report Editor – Alex

Assigning these roles enabled a smooth and efficient team working process and helped to keep track
of team progress.

Task Assignments
Task assignment took place throughout the assessment process as detailed in part a of this
document. When the time came to assign new tasks, we tried to keep these assignments in line with
each person’s particular skill set in order to ensure efficiency as such throughout the project
members mainly focussed on the particular aspects which they felt most comfortable with, usually
due to previous experience, for example Joe took responsibility for website development and Alex
produced the bulk of our game’s code.

Part C

Intro
Our first step in planning this assessment was to create a task breakdown table, as shown below
(note that time estimates were rounded up to the nearest week e.g., 1.a. which we believed would
only need one team meeting are 1 week)

Main
Task
No.

Main Task Subtask
letter.

Subtask Dependencies Estimated
time
(weeks)

Estimated
Start and
End Time
(in Term
Weeks)

1 Team Forming a Team introductions
and familiarisation

- 1 Aut/3

b Assigning team roles - 1 Aut/3
2 Identifying risks

and
requirements

a Meeting to discuss
initial ideas about
requirements and
risks, and compile a
list of client questions

- 1 Aut/4

b Client meeting to
discuss requirements
and ask formulated
questions

2a 1 Aut/4

c Team meeting to
agree upon necessary
requirements and
relevant risks

2b 1 Aut/4

d Creation of formal
requirements
representation
(req1.b)

2c 1 Aut/5

e Creation of formal
risk representation
(risk1.b)

2c 1 Aut/5

f Written explanations
of our requirement
and risk process
(req1.and risk1.a)

2d 1 Aut/5

3 Website a Create initial website
(not yet populated
with necessary
documents)

- 3 Aut/6

b Add all necessary
documents to
website

5b, 3a 1 Spr/3

4 Game Design a Team meeting to
discuss and agree
upon game design
ideas

2c 1 Aut/6

b Creation of abstract
architecture
diagrams

4a 2 Aut/7

5 Implementation a Creation of
functional,
commented code

4b 5 Spr/2

b Explanation of
non-implemented
features (impl1)

4a 1 Spr/2

c Creation of reflective
concrete architecture
diagrams

5a 1 Spr/3

6 Submission a Completing
outstanding
reflective
documentation

5b 1 Spr/3

b Compiling
documentation into
PDFs, and combining
this with code and
website into a
submittable zip file

6a 1 Spr/3

c Completing self and
peer assessment

- 1 Spr/3

We then used this table in order to create an initial Gantt chart to show a theoretical schedule for
when each task would be completed for assessment 1(as shown below;)

At each team meeting our assigned secretary, Jarred, would create meeting notes which he would
then upload to our shared google drive. At the end of each week, we then used these notes in order
to create a ‘snapshot’ of our team progress (shown on website snapshot page).

These snap-shots would be created by taking a condensed version of the task breakdown table and
colour coding the tasks which were due to be done at this point in the project. With the following
colour connotations:

● Red – Not started
● Orange – In progress
● Green – Completed

