Software Architecture

Abstract architecture was created with draw.io with basic relationships of the
program being shown on the diagram.

Concrete architecture was produced jointly by PlantUML and Adobe Photoshop. The
classes were separated into different categories with the connections within the
category shown on the diagram. The inter-category connections are later added
through Adobe Photoshop with lines colour coded for easier understanding.

Abstract Architecture

ArraylList actors

~ woid CreateActors()

@ void show()

@ yoid render(float delta)

@ yoid hide()

@ void resize(int width, int height)
' void update()

@ void dispose()

9 void create()

© EndScreen

© Label wonText
© Label playerStats

® public void win()
~ void CreateActors()

?

© GameScreen

O Label healthLabel
O Label dosh
O Label ammo
O Label quesiDesc
O float accumulator

© MenuScreen

void Create Actors()
@ void show()
@ void hide()

“int reward

String description

boolean isCompleted

=
@
E Manage compaosition and Manage creation and
§' rendering of game elements ul Managers disposal of game elements
g
=
@
= Visual in-game objects, . : Abstract concepts like
E ships, buildings, etc. Game Obleds Imanglbles "guest", "faction”, eftc.
&
E Enable functionality of
nable functionali -
2| ovjects, collisions, health, Components Al ARl
s behaviour, etc. T
'S
Fig 3.1.1: Diagram of the abstract architecture
Concrete Architecture
@ Page @ Quest
O PirateGame parent String name

@ boolean checkCompleted(Player p)

© KillQuest

O Ppirate target

\

© LocateQuest

O Vector2 loc
O float radius

@ Node

@ LocateQuest{ector2 pos, float r)

@ void show()

 void CreateActors()

© Collisioninfo

© Fixture A
© Ficture 1B
© Body bA
© Body bB
© Ertity a

© Entity b

O Vector2 position
© float cost

© NodeHeuristic

@ float estimate(Node node, Node endNode)

© Path

O Node from
2 Node to

Fig 3.1.2: Diagram of miscellaneous classes

© TileMapGraph

O NodeHeuristic heuristic
O Array nodes

o Array paths

O Vector2 mapDim

O ObjectMap nodePaths

B TileMapGraph()
@ TileMapGraph(Tiledap map)
@ GraphPath<Node> findPath(Node start, Node goal)

2 QueueFIFO<Vector2> findOptimisedPath(Vector2 a, Vector2 b)

@ Component

' ComponentType type
< Entity parert

© AlMavigation © Pirate © RigidBody © Text © TilaMap
© RigidBody b O int factionid © PlaverController © int bodyle! © BitmapFont font © Transform
i b ©Renderable : 2 TiledMap map
© Transformt O int plunder O PhysicsBodyType bodyType O Wector3 fortColour ® T TR Genrh Ty —
O Attributes attributes poolean isAlive O Player player ey —— O wector? halfDim O Wector? position s O Vestor2 :cale
O SteeringBehavior behavior it heatth O float speed B 2 © void BeginCortact() © Vector2 offset @ void render() O float rotation
© SteeringAcceleration steeringOutput int attackDmg @ yoid En:Contact() © String text @ yoid BeginContact()
@ void EndContact
B yoid applySteering() @ yoid shoot(Vector2 dir) @ void applyForce(Vector2 force) @ yoid render() void EndContact()
© Aftributes g
© float boundingRadius \ BamEMH nager
© float maxSpd \ -
© flos mawce . EmityManager
2 float maxAngSpd] g
O float maxAnghcc | L d .
 boolean sTagged ; |] l Renderinghanager

PhysicsManager

|
|
©NPCShip ©Pla\rer
|
|

: © Building J /

| O String buildingtame © Ship

© CannonBall Oint atlas_id 3 © College

O hoolean isFI ObjectMap shipDirections
©World|‘u‘|ap e LA O ector2 currentDir O ArrayList buildingMames

o
o g:lat s;:; @ void create{ector2 pos, String name) ® Loolean isAlive() O ArrayList buildings
=10 paren @ yoid destroy()
. @ float getAttackRange! B ypid spawn(String colour)
@ yoid fire(\ector2 pos, Vector2 dir, Ship sender) @ yoid BeginContact{ Colisioninfa info) © Yoid plunder(int money) ® void isAlive()

@ yoid EndContact(Collisioninfo info)
@ yoid ErterTrigger{Collisioninfo info)
@ yoid ExitTrigger(Collisioninfo info)

@ yoid shoot()

Fig 3.1.3: Diagram of Entity and Component classes \Q ©47
Entity

O int entityCount
O string entityName
O ArrayList components

@ void raiseEvents(ComponertEvent... events)

© ResourceManager

O poolean loaded

O Assethanager manager
O Arraylist ids

O ArrayList tileMaps

O HashMap fortGenerators
O HashMap fonts

@ int addTexture(String fPath)

@ int addTextureAtlas(String fPath)

@ int addTileMap(String fPath)

@ int addFortGenerator(String fontPath)

@ int createFont(int font_generator_id, int fortSize)
@ void loadAssets()

B yoid checkAdd()

© RenderingManager

O ArrayList rendertems

O Arraylist layers
O OrthographicCamera camera

O SpriteBatch batch
@ void render()

© PhysicsManager

O World box2DWorld
O ArrayList box2DBodies

@ yoid Initialize(boclean drawDebu:

@ int createBody(BodyDef bDef, FixtureDef fDef, RigidBody rb
B Shape tile_getShape(Rectangle rectangle

B ector? tile_getCenter(Rectangle rectangle

@ yoid createMapColision(TileMap map)

Entities and Companents

© EntityManager

O ArrayList entityNames

O Arraylist entities

O Arraylist components

O Inputianager inpManager

@ |nputManager getinputhanager

@ yoid addComponent{Component ¢

@ void changeMame(String prev, String new.
@ yoid raiseEvents(ComponentEvent... comps)

;

4
© GameManager

O Arraylist factions

O Arraylist ships

O Arraylist ballCache

O WorldMap map

O TileMapGraph mapGraph

@ void CreatePlayer()

@ void CreateNPCShip(int factionled)

@ void CreateWorldMap(int mapld)

@ void shoot(Ship p, Vector2 dir)

@ QueusFIFO getPath(Vector2 loc, Vector2 dst)

© CollisionManager

O hoolean inttialized

Fig 3.1.4: Diagram of
Manager classes

@ yoid beginContact(Contact contact)

@ yoid endCortact{Contact contact)

@ yoid preSolve(Contact cortact, Manifold oldManifold)

@ yoid postSolve(Contact contact, Contactimpulse impulse)

© InputManager

@ poolean keyDown(int keycode)

@ poolean keyUp(int keycode)

@ poolean keyTyped(char character)

@ poolean touchDown(int screeny, int screen’, int pointer, int button)
@ poolean touchUp(int screen), int screen | int pointer, int button)

@ poolean touchDragged(int screeny, int screen’ | int poirter)

© poolean mouseMoved(int screenX, int screen’y)

@ poolean scrolledfloat amountX, float amount'y)

© QuestManager

o

ArrayList alQuests

@

void createRandomQuests
@y

The abstract architecture is concerned with segmenting the large, monolithic task of
building the game into separate logical elements which could be planned and
reasoned about separately. Connections drawn between elements signify a logical
relationship rather than necessarily representing extension or composition relations
such as those featured in the UML diagram detailing the concrete architecture. For
example, factions/colleges ended up implemented as components and managed
implicitly, unlike what fig. 3.1.1 seems to suggest. Nevertheless, it is useful to see
them grouped under intangibles while planning the overall architecture.

Concrete architecture builds on the abstract in two main ways, by capturing
additional implementation details, and by reflecting the contribution of the game
engine to enabling game functionality.

Additional specifics of the game’s implementation are provided by means of detailing
the class structure of the code, annotating the classes with their significant
functionality in the form of methods and variables, and drawing the relationships
between the classes on the diagram.

The structure of the concrete architecture is informed by that of the game engine.
For example, we move from the Ul element of the abstract architecture to a separate
Page class and its subclasses responsible for rendering and composition of Ul
widgets, and the Renderable component and RenderingManager class for the
rendering of in-game objects such as ships and buildings: this is due to how the game
engine implements the rendering of different game aspects. In this way, concrete
architecture provides significantly more detail at a lower conceptual level than the
abstract.

It should be noted that significant discretion had to be exercised regarding the level
of detail captured in concrete architecture: it was neither feasible nor desirable to
capture the full level of detail of the code’s implementation. In the interest of using
the concrete architecture as a higher-level abstraction used for reasoning about and
planning the implementation, only significant functionality was captured and
boilerplate methods and variables have been omitted. Furthermore, we had to
deviate from the UML standard to depict certain relationships without making the
diagrams too large to display on A4 paper. Hence, figs 3.1.3 & 3.1.4 have the
relationships between entities & components and their respective managers
depicted in a shorthand form that we hope is nevertheless clear and informative.

Another point of note regarding the architecture and implementation is that during
the process of implementation, certain approaches were selected that were not
obvious during the architecture planning stage. For example, update methods called
by the game loop were leveraged to provide certain functionality, like monitoring for
game over conditions within the GameScreen class. These approaches were not
foreplanned and are hard to document within a UML class diagram. Hence, a better
reference to them would be perusing the rendered Javadocs associated with the
game.

Relations to requirements

FR_SHIP_KB_INPUT
By referring on the InputManager in fig 3.1.4, there are numerous functions in it
which accepts keyboard signals from the user for ship navigation

FR_VIEWPORT_SCALING

By referring to the Page class on fig 3.1.2, there is a class resize() which takes the
width and height of the display or window, thus being able to render the game on
displays with different sizes.

FR_PLAYER FIRE

Referring to the Ship class in fig 3.1.3, there is a function called shoot which is called
the same function in the GameManager in fig 3.1.4, which allows users to fire
weapons.

FR_BULLET_TRAVEL

Referring to CanonBall class in fig 3.1.3, the method fire() takes the starting position,
direction and the sender ship, thus it shows the travel of the munitions sent from
ships.

FR_QUEST _TRACKING / FR_QUEST_RANDOMISE

In the Quest class of fig 3.1.2 and Quest manager of fig 3.1.4, there are methods
called checkCompleted() and createRandomQuests(), which showed the game can
track on player’s quest completions and also randomise quest objectives.

FR_GAME_WIN

In EndScreen class on fig 3.1.2, there is a label called wonText and a method called
win(), which are responsible for displaying status of the completion of boss
encounter.

NFR_WORLD_COLLISIONS

There are multiple classes and methods which are responsible for world collisions. In
PhysicsManager(fig 3.1.4), there is a method createMapCollision() which is
responsible for creating zones which can be collided into. In both Building and
TileMap classes (fig 3.1.3), there are methods called BeginContact() and EndContact()
which process the collision of entities in the game. And data of two entities colliding
will be stored in class Collisioninfo of fig 3.1.2.

