Software Architecture

e The abstract architecture was created with draw.io, with the basic relationships of the
program being shown on the diagram

e The concrete architecture was produced with PlantUML
The classes were separated into different categories with the connections within the
category shown on the diagram

e The inter-category connections are later added through Adobe Photoshop with lines
colour coded for easier understanding

Abstract Architecture

§
E Manage composition and Manage creation and
E‘I rendering of game elements ul MEII"I-E.QEI‘S disposal of game elements
=
: | |
é Visual in-game objects, ; . Abstract concepts like
= ships, buildings, etc. Game Objects Intangibles "quest, action”, etc.
R |
g Enable functionality of
8 ; . Al-specitic code, state
E uhnecg.! E:Imﬁ:;eanh. Components Al Tachines. ek
'S
Fig 3.1.1: Diagram of the abstract architecture
Concrete Architecture
Points System (Assessment 1)
@ Pirate
O int factionld © GameScreen
O int plunder
© PointsManager < boolean isAlive - t:gz: I;z::hLahel
R < int health O Label ammo
© int points < intattackDmg O Label questDesc
@ et[: O int POINTS VALUE O Label p.jinlg
© void sef(int paints) @ void shoot(Vector2 dir) S AT Y
@ void change(int amount) B void onDeath() < void CreateActors()
Figure 1.

- Anew class ‘PointsManager’ was created in order to change the amount of points the
player earns after performing specific tasks

- For example, the ‘Pirate’ class now has a variable ‘POINTS_VALUE’, which is the points
awarded for killing an enemy pirate

Ship Combat

e
© Pirate 4

@ Ship

O int factionld

O int plunder

< boolean isAlive
< int health

< int attackDmg

O int POINTS _VALUE

@ CannonBall

H void onDeath()

o void kill()

© void shoot(Vector2 dir)

© void addTarget (Ship target)
© boolean canAttack()

@ void shoot(Vector2 dir)

© Vector2 targetPosition()

© void takeDamage(float dmg)

O float speed

@ void fire(Vector2 pos, Vector2 dir, Ship sender)
B void removeOnCollision()

O Vector2 currentDir

© boolean isAlive()

o float getAttackRange()

© void plunder(int money)

© void shoot(Vector2 dir)

© void EnterTrigger(Collisioninfo Info)

Figure 2.

© NPCShip

O long shootTime

© void EnterTrigger(Collisioninfo info)
® void removeOnDeath()
© void update()

- New methods have been added to ‘Pirate’, such as ‘takeDamage’ which is called when
any enemy ship detects a cannonball fired from the player

Difficulty Selection

© EndScreen

O Label wonText
O Label playerStats

© public void win()
< void CreateActors()
© void show()

@ Page

O PirateGame parent
<> ArrayList actors

< void CreateActors()

© void show()

© void render(float delta)

© void hide()

0 void resize(int width, int height)
< void update()

© void dispose()

© void create()

© GameScreen

O Label healthLabel
O Label dosh

O Label ammo

O Label questDesc
O Label points

O float accumulator

< void CreateActors()

A

© MenuScreen

< void CreateActors()
© void show()
© void hide()

© PauseScreen

@ DifficultyScreen

O TextButton health
O TextButton damage

< void CreateActors()
© void update()

© void show()

© void hide()

O TextButton Easy
O TextButton Medium
O TextButton Hard

< void CreateActors()
© void show()
© void hide()

- Two new classes ‘PauseScreen’ and ‘DifficultyScreen’ have been added to Page

- The pause screen also controls the powerups, as shown in figure 4

- The difficulty screen is located on the main menu, and pressing a TextButton will call a
method to alter the game settings, such as starting health and cannonballs

Figure 3.

Power Ups (Plunder System)

\ N Nt

© Firate /

© PauseScreen O int factionld
O int plunder
< boolean isAli
O TextButton health & inolohzaar“_lls e
O TextButton damage < Int aitackDag

O int POINTS_WALUE

@ void shoot{Vector2 dir)
B void onDeath()

O TextButton ammo

0 TextButton multiShoot @ void addTarget (Ship target)
@ boolean canAttack()

O TextButton speed @ void shoot{Vectar2 dir)

O TextButton damageReduce © Vector2 targetPosition()
@ void kill()

<> void CreateActors[] @ void takeDamage(float dmg)

© void update() o void healthUpgrade()

F @ void ammoUpgrade()
® Vﬂ!d S!’\OW[) @ void multiShootUpgrade()
© void hIdE{) ® void speedUpgrade()

@ void reduceDamage()

Figure 4.
- The TextButtons seen above are all new powerups, which when pressed on will deduce
plunder from the player and call a method to activate a powerup, such as
healthUpgrade()

Save State

© GameManager Sy \

O ArrayList factions © Ship

O ArrayList ballCache [0 ObjectMap shipDirections
0O WorldMap map O Vector2 currentDir
O TileMapGraph mapGraph

O boolean speedincrease

O Preferences prefs
© void CreatePlayer()

@ boolean isAlive()

© void CreateNPCShip(int factionld) © float getAttackRange(]
© void CreateWorldMap(int mapld) @ void plunder(int maney)
@ void shoot(Ship p, Vector2 dir) @ void shoot{Vector2 dir)
© QueueFIFO getPath({Vector2 loc, Vector2 dst) @ void EnterTrigger(Collisioninfo Info)
© void load() @ void getActiveUpgrades()
© void save() A
Figure 5.

- Two new methods load() and save() have been implemented to handle saving the
player’s stats to a file, and then loading them back in when starting the game

As mentioned in the change report, the complete architecture diagrams can be found here:

e htips://drive.google.com/drive/folders/1Ux-RAH39QXHEAT0aGJMCgRMJGW-bPU9V?u
sp=sharing

https://drive.google.com/drive/folders/1Ux-RdH39QXHEAT0aGJmCgRMJGW-bPU9V?usp=sharing
https://drive.google.com/drive/folders/1Ux-RdH39QXHEAT0aGJmCgRMJGW-bPU9V?usp=sharing

The abstract architecture is concerned with segmenting the large, monolithic task of
building the game into separate logical elements which could be planned and reasoned about
separately. Connections drawn between elements signify a logical relationship rather than
necessarily representing extension or composition relations such as those featured in the UML
diagram detailing the concrete architecture. For example, factions/colleges ended up
implemented as components and managed implicitly. Nevertheless, it is useful to see them
grouped under intangibles while planning the overall architecture.

The concrete architecture builds on the abstract in two main ways, by capturing
additional implementation details, and by reflecting the contribution of the game engine to
enabling game functionality.

Additional specifics of the game’s implementation are provided by means of detailing the
class structure of the code, annotating the classes with their significant functionality in the form
of methods and variables, and drawing the relationships between the classes on the diagram.

The structure of the concrete architecture is informed by that of the game engine. For
example, we move from the Ul element of the abstract architecture to a separate Page class
and its subclasses responsible for rendering and composition of Ul widgets, and the
Renderable component and RenderingManager class for the rendering of in-game objects
such as ships and buildings: this is due to how the game engine implements the rendering of
different game aspects. In this way, the concrete architecture provides significantly more detail
at a lower conceptual level than the abstract.

It should be noted that significant discretion had to be exercised regarding the level of
detail captured in concrete architecture: it was neither feasible nor desirable to capture the full
level of detail of the code’s implementation. In the interest of using the concrete architecture as
a higher-level abstraction used for reasoning about and planning the implementation, only
significant functionality was captured and boilerplate methods and variables have been omitted.

Furthermore, we had to deviate from the UML standard to depict certain relationships
without making the diagrams too large to display on A4 paper. Hence, some figures have the
relationships between entities & components and their respective managers depicted in a
shorthand form that we hope is nevertheless clear and informative.

Another point of note regarding the architecture and implementation is that during the
process of implementation, certain approaches were selected that were not obvious during the
architecture planning stage. For example, update methods called by the game loop were
leveraged to provide certain functionality, like monitoring for game over conditions within the
GameScreen class. These approaches were not foreplanned and are hard to document within
a UML class diagram. Hence, a better reference to them would be perusing the rendered
Javadocs associated with the game.

Relations To The Requirements
e Below are the requirements that needed significant changes made in the architecture,
namely, the assessment 2 ones

UR_SHIP_COMBAT

e By referring to figure 2, there are numerous functions and variables that control the
player and enemy ship’s health, cannonballs, movement etc

e For example, both have a shoot() function that gets the position of the other entity and
fires a cannonball

e Ship and NPCShip both have methods for detecting collisions, which allows them to
interact with cannonballs to take damage, and allows NPCShips to detect and target the
player ship.

e [f an NPCShip collides with a ship that is not a member of its faction, it will add that ship
to a list of targets that it follows and fires at.
e Also, the class ‘Pirate’ has a ‘POINTS_VALUE’ variable which is used to award the
player with points if they defeat an enemy
o UR_EARN_POINTS + UR_EARN_XP

UR_OBSTACLE_ENCOUNTER
e Obstacles were done through the tileset on the application ‘Tiled’
e Due to this, no changes to any class diagrams were needed as it involves no code

UR_SPEND_MONEY
e As shown in figure 4, a new Ul class extending Page, PauseScreen, was added to
enable the player to spend plunder
This class interacts with the existing Pirate class to handle the player’s plunder value.
e Pirate is responsible for checking how much plunder the player has and decreasing the
plunder value when they buy an upgrade

UR_POWERUPS

e By pressing Z during gameplay, the player is able to access the PauseScreen menu and
spend their plunder on various powerups

e PauseScreen has various buttons which call methods in the Pirate class when clicked.
Handling all five of these methods in Pirate made the code more manageable than
having the buttons call methods in various different classes.

e Most of the powerup methods act on fields already a part of Pirate, with the exception of
speedUpgrade(), which changes the speed variable in PlayerController

UR_DIFFICULTIES

e As shown in figure 3, a new Ul class extending Page, DifficultyScreen, was added to
enable the player to select a difficulty at the start of the game

e A new button was added to the existing MenuScreen class, which sets the screen to the
DifficultyScreen when clicked

e Each of the buttons in DifficultyScreen interacts with the Pirate class to set the player’s
starting stats based on the difficulty selected, so that they start with more health and
ammo on the easy difficulty and less on the hard difficulty

FR_SAVE_STATE
e Saving and loading is handled by new methods in the GameManager class.
e The save method is accessed via a button on the PauseScreen menu and if a save file
exists then the load method can be accessed via a button on the main MenuScreen
e The save data is stored locally using libgdx ‘preferences’

UR_EARN_POINTS

e Anew PointsManager class was created to keep track of the player’s points. It uses a
private int to internally store the points, and provides getter and setter methods for
modifying the points.

e These methods are static, so that they can be called from anywhere in the code without
requiring a reference to a PointsManager instance. This fits the concept of a points
system, in which you may earn points for a variety of different actions, i.e. from a variety
of positions in the codebase.

e For example, the Pirate class has been updated so that it calls the
PointsManager.change() method when it dies, rewarding the player with a constant
number of points when a pirate dies.

